泉州电销卡办理热线
适用于教育,房产,金融,代理记账,股票,保健品,酒水,收藏品,pos机,装修,增值应有尽有,029,外显手机号等
首先是建设面向训练及推理的计算芯片。随着人工智能融合赋能广度和深度的不断加强,不同场景应用将提出不同算力需求,以物联网、移动终端、安防和自动驾驶为代表的专用端侧推断芯片百花齐放,人工智能正式进入算力定制化时代。为更好解决当前训练算力昂贵、推理计算不足的局面,应聚焦功能多元化、架构多元化的人工智能基础设施建设,针对性补充机器学习专属操作计算能力,面向数值计算并行、数据跨域交换等进行攻关建设,积极探索多元化架构,以类脑计算、量子计算范式为突破口,实现机器学习计算能力加速。
其次是全面构建面向深度学习计算加速的理论及工程体系,全面涵盖从算法顶层、编译器,到体系结构等方面的加速理论及工程实践能力,以大规模分布式学习需求为指引,优化算法实现、打造深度学习编译器,探索体系结构与硬件的最优实践。
二是建计算泛在能力。端侧是人工智能最终应用的落地点,端侧既是数据的生成端,也是数据的使用端,需要构建能够满足海量不同端侧应用场景下的计算支撑能力。端侧由于受到实时性、硬件能力、功耗等多种限制,需要针对人工智能模型实现不同层面的优化,全面提升端侧的数据计算、采集及传输能力,综合考虑传感器、端侧芯片、端侧软件框架、网络架构演进、数据中心协同等关键因素,构建能够实现机器学习模型训练、部署及动态更新的云端协同算法及工程实现能力,打造坚实的泛在计算基础。
三是建协同生态能力。如图2所示,未来人工智能通用平台、行业平台以及专用系统将呈现三大协同态势,需要抓住窗口期,全面建设全新的系统协同能力。首先是构建3个系统间的协同能力。通用平台、行业平台以及面向具体应用的专用系统之间的功能界定将越来越明确,相关功能将呈现模块化特性,并且高度互补,以实现深度协同。
其次是构建专用系统的软硬协同能力。面向应用的专用系统为满足业务实时响应要求,除了需要将专属定制算力芯片进行部署外,还需要在软件层面实现两项功能:一是实现软件与定制芯片的高度耦合,以达到性能最优;二是软件需要与垂直行业平台及通用平台做好高效对接,保证调用所需平台功能的实时性;三是构建行业协同能力,面向行业赋能的行业平台将在通用平台基础上,抽取行业业务逻辑,沉淀行业服务能力,实现与行业已有业务系统的无缝对接。值得注意的是,行业平台由其业务属性主导,未来行业平台的建设主体一定是由垂直行业来主导构建的。
发表评论